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Abstract

In short-term production management of the Internet of Production (IoP) the
vision of a Production Control Center is pursued, in which interlinked decision-
support applications contribute to increasing decision-making quality and speed.
The applications developed focus in particular on use cases near the shop
floor with an emphasis on the key topics of production planning and control,
production system configuration, and quality control loops.

Within the Predictive Quality application, predictive models are used to
derive insights from production data and subsequently improve the process-
and product-related quality as well as enable automated Root Cause Analysis.
The Parameter Prediction application uses invertible neural networks to predict
process parameters that can be used to produce components with desired quality
properties. The application Production Scheduling investigates the feasibility of
applying reinforcement learning to common scheduling tasks in production and
compares the performance of trained reinforcement learning agents to traditional
methods. In the two applications Deviation Detection and Process Analyzer,
the potentials of process mining in the context of production management are
investigated. While the Deviation Detection application is designed to identify
and mitigate performance and compliance deviations in production systems, the
Process Analyzer concept enables the semi-automated detection of weaknesses
in business and production processes utilizing event logs.
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With regard to the overall vision of the IoP, the developed applications
contribute significantly to the intended interdisciplinary of production and infor-
mation technology. For example, application-specific digital shadows are drafted
based on the ongoing research work, and the applications are prototypically
embedded in the IoP.

1 Introduction

Production management today faces numerous challenges such as increasing
uncertainty and simultaneously growing complexity (Westkämper and Löffler
2016). Shorter product life cycles, individualization, and disruptive technological
innovations require efficient implementation of changes (Schuh et al. 2017). The
potential of the IoP for production management lies in providing data-driven
decision support on all levels of managing production in volatile and uncertain
business environments (Schuh et al. 2019a). Short-term production management
focuses in particular on decision support in time-sensitive scenarios on or near the
shop floor. Therefore, the aim of the research work is to learn and profit from
historical data by developing self-learning production systems and, as a result, to
significantly increase the decision-making quality and the decision-making speed
in production environments (Müller et al. 2022). This is important to ensure the
robustness of production processes by quickly making decisions and implementing
appropriate measures (Stricker et al. 2015).

For this purpose, data and analysis latencies are to be minimized through
the integration of continuous cross-domain data access and the development and
combination of diagnostic, predictive, and prescriptive analytics models. Moreover,
decision and implementation latencies are to be reduced by means of an appropriate
collaboration of autonomous processes and model-based decision support as well as
the implementation of suitable measures in the production system.

The practical realization of such decision support takes place through the
development of a Production Control Center as shown in Fig. 1, in which interlinked
applications contribute to increasing decision-making quality and speed in the
production environment. Context-specific data from the IoP data lake is used in
the sense of a control loop to generate data-driven transparency via the various
applications with regard to emerging adjustment needs and to address these by
deriving and implementing suitable measures.

The five applications developed (cf. Fig. 1) focus in particular on use cases near
the shop floor with an emphasis on the key topics of production planning and
control, production system configuration, and quality control loops. The specific
challenges, the methods used, and the results obtained through interdisciplinary
research are described in detail in the following Sects. 2, 3, 4, 5, and 6. A summary
and outlook are given in Sect. 7. The five applications described in this paper cer-
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Fig. 1 Production Control Center

tainly do not address all possible challenges and problems in short-term production
management, which is why further icons for future linked applications are already
included in the proposed production control center (see Fig. 1).

2 Intelligent Production Management Through Predictive
Quality

In order to continuously improve process- and product-related quality, data-based
methods for decision support in production are being investigated as part of the
Intelligent Production Management through Predictive Quality (PQ) application.
The focus is on data analysis for PQ, which enable an early prediction of quality
deviations and production defects, as well as the identification of the underlying
causes. This information can then be used for deriving target-oriented corrective
measures. As shown in Fig. 2, primarily production processes with two or more
production steps are considered. This enables the investigation and development
of approaches that lead to process step overarching predictions, as well as the
identification of interactions between different process steps (Schäfer et al. 2019).

2.1 State of the Art

Currently, existing quality management methods are progressively supplemented
with data-based approaches to face the challenges arising with increasingly complex
products. One of the main challenges in implementing data-based decision support
through PQ is the pre-processing and integration of diverse data sources (Groggert
et al. 2017). Due to the various sources, there are a variety of formats and data
types (Wang 2017). Common data management methods, such as Data Warehouse
(Bauer and Günzel 2013) and Smart Factory Information (Yoon et al. 2019),
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Fig. 2 Intelligent Production Management through Predictive Quality

mostly consider the technical implementation rather than a clear structure for the
data which is needed for PQ applications. This results in the necessity of a data
model with a comprehensive data structure. Various information modeling standards
already exist. However, they omit standardized instructions on how to perform the
modeling process (Sudarsan et al. 2005). Moreover, no product-centric models for
manufacturing data could be found in the literature so far.

Utilizing data structured by a product-centric data model, PQ is able to derive
product- and process-oriented predictions about quality using data analytics meth-
ods. To subsequently optimize quality, it is crucial to get insights into the trained
model (Cramer et al. 2021). Model-agnostic methods allow to detect to what extent
the model prediction depends on the different input variables as well as to compare
different types of models (Vilone and Longo 2021). A systematic investigation of
the methods with regard to their applicability in the context of PQ has not yet been
conducted (Goldman et al. 2021).

2.2 Approach and Methods

The predictive capabilities of the PQ application will empower the operator to
improve product and process quality. For automating these operations, a universal
process-independent data model is required, especially in cross-process approaches
(cf. Fig. 2) the heterogeneity of the processes and the associated data lead
to problems during analyses. To solve these, a comprehensive meta-model for
production data (MMPD) was developed by Cramer et al. (2021), which allows
the derivation of production-related data models. These universal, yet application-
specific data models ensure compatibility between the data and the required data
analysis pipelines for PQ applications. The MMPD is a product-centric model
and focuses on the holistic view of product-related data. The metadata provides
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Fig. 3 Extract of the MMPD on the left, Partial Dependence Plot (PDP, marked in blue) with
Individual Conditional Expectation (ICE, marked in gray) lines on the right

the ability to incorporate the domain- or application-specific context required to
accurately interpret the data points (cf. Fig. 3). Uniform interfaces and standards for
data integration and consolidation procedures allow product-centric PQ applications
to access only the data and information they required. In this way, the MMPD,
with the automated data analysis pipeline built on it, serves as the basis for a PQ
application ecosystem.

To provide decision support in the optimization of production processes and
quality improvement, the most important process parameters are identified and
investigated. A requirement for the investigation of important features or parameters
in the production process are accurate prediction models. The prediction models
are used as a proxy for a simulation or a digital shadow of the production line,
and it is assumed that a good prediction model captures all the intricacies of the
production process that can reveal opportunities for optimization. These prediction
models are trained in the data analysis pipeline discussed above, with the options of
more specific or complicated model specifications if it is required.

The most influential parameters are identified with feature importance methods
and on three levels of complexity. The first and most intensively researched level of
investigation is singular feature importance. Singular features can indicate the most
influential parameters to the prediction and by proxy, the overall quality. The second
level of the feature investigation refers to the identification of interactions between
features in the model. This could refer to parameters in one production step, but the
more valuable outcome is finding interactions across production steps. This means
the intervention or optimization point can be moved to the earliest possible step
in the production line. The third level of feature importance is related to causality
inference and the generation of causal graphical models that capture all relationships
between parameters in the production line.

An example of the first level of investigation is partial dependence plot (PDP)
(Friedman 2001) as the four examples in Fig. 3 show. The PDP displays the average
relationship between the different values of a considered input feature and the
predicted value of the target feature. For this purpose, marginalization is performed
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over the distribution of the feature of interest and the machine learning model
prediction. As the other input features are marginalized, a function only depending
on the feature of interest is obtained, including interactions with other input features.
Figure 3 illustrates for example that higher values of input X1 lead to a higher model
prediction. The PDP can also be used for interactions, including first and second-
order effects and indicating the effect on the outcome when two features would be
adjusted together. The PDP plot is enriched with Individual Conditional Expectation
(ICE) plots, which indicate the prediction for different values of a feature of interest
separately for each data point (Goldstein et al. 2015). ICE lines not parallel to the
PDP indicate that there are interactions with other features. Figure 3 depicts that for
input feature X1 the ICE lines roughly run in parallel to the PDP, which indicates
that the impact of feature X1 on the model prediction surpasses the interaction with
other input features. For causality representation, undirected graphical models prove
to be useful by representing interactions in a digestible format, without committing
to a direction of causality. Directed graphical models capture the directionality
of the influences along the production line and provide a visual overview of all
relationships identified.

2.3 Results and Conclusion

The developed MMPD enables the efficient use of universal data analysis pipelines
for production data. Based on feature importance methods, both main and interac-
tion effects can be detected to build causal models for root cause analysis in the
future. The results presented here serve as a baseline for further work on improving
product- and process-related quality. For example, this includes the integration of
measurement uncertainties in model building for quality prediction. In addition, the
elaboration of a concrete approach and the development of methods for the creation
of causal models for production processes to determine the causes of predicted
defects and quality deviations will be examined. Finally, a further necessary research
priority will be focused on defining a practical way for integrating the data-based
methods into established processes and workflows.

3 Enabling Decentralized Production by Objectifying
Machine Setup Using Parameter Prediction

The events of recent years have changed the world of manufacturing. The Covid-
19 pandemic demanded manufacturers of textile and plastic goods to flexibly and
quickly switch their production to needed goods, such as masks or face shields
(Missoni et al. 2021). Nowadays, due to globalization, companies operate in an
increasingly volatile and uncertain environment and are often confronted with
various types of disruptions.

One approach to address those issues is decentralized production. By switch-
ing from a centralized model with a single or few large production sites to a
manufacturing environment with many smaller, widely distributed micro-factories,



8 R. H. Schmitt et al.

dependence on individual production sites is reduced and fast and flexible reactions
to sudden, unforeseen events are enabled. Besides increased resilience, decentral-
ized production networks offer many benefits, such as shorter delivery routes and
times as well as a reduction in packaging material, reducing waste and increasing
sustainability (Essers and Vaneker 2016; Morgan et al. 2021).

Two technologies, additive manufacturing (AM) and textile production, have
proven their adaptiveness during the beginning of the Covid-19 pandemic. While
traditional supply chains couldn’t keep up with the demand for personal protective
equipment (PPE), a Czech manufacturer of 3D printers was able to ramp up mass
production of face shields in just 3 days, in which dozens of prototypes were
manufactured (Prusa Research 2022). By distributing the geometry files digitally,
face shields could be produced globally at short notice. A similar observation was
made in the textile industry. Clothing manufacturers in Germany switched their
production to masks and protective equipment in a short time, producing up to
10,000 masks per day (Oertel 2020). Moreover, material suppliers and producers
were connected via a founded platform (Schmelzeisen 2020).

To exploit the potential of decentralized production, managing increasing com-
plexity in production planning and control, and a constant part quality must
be guaranteed. This is increasingly difficult in a highly decentralized system,
since the type of machines, the available resources, the environmental conditions,
and the operator’s skill level can vary heavily. This is paired with the fact that for
the presented manufacturing technologies, many process parameters are available
that influence the resulting part quality and are oftentimes not fully understood.
Additionally, there is a shortage of skilled workers in the above-mentioned, highly
knowledge-dependent industries. In summary, to harness the full potential of a
decentralized production network, the individual process must be flexible while
being reliable and a defined, high-part quality must be achievable, regardless of
variations in machines, material, environment, or operator skill.

3.1 State of the Art

The freedom and flexibility in part production via AM also entails high process
complexity in form of many adjustable process parameters that influence the
resulting part properties, like part strength and surface roughness, but also process
factors, like manufacturing time. Those process parameters are typically adjusted
for each part, based on expert knowledge or via a trial-and-error approach. Some
parameters can have a significant effect on resulting part properties, like orientation
on tensile strength. For example, one study found a 45.8% decrease in tensile
strength between parts that were oriented horizontally and vertically on the build
plate (Zaldivar et al. 2017). Currently, correlations between process parameters and
part properties are mostly studied for each parameter individually. However, for
a complete characterization of the process, interdependencies between parameters
must be considered. For example, increasing layer height reduces the manufacturing
time but increases surface roughness (Bintara et al. 2021), while reducing process
speed has the inverse effect (Luzanin et al. 2013).
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To handle the high amount of adjustable process parameters and their influence
on part properties in various manufacturing technologies, previous studies have
utilized machine learning-based techniques (Hsieh 2006; Jagadish et al. 2019; Jang
et al. 2016). While typically reporting high prediction accuracies, the presented
methods are not easily scalable, need a lot of computing power for each prediction,
and rely on a very large set of training data.

3.2 Approach and Methods

To objectify the setting of process parameters in situations where high decision
speed is necessary and based on a limited set of training data to achieve defined,
high-part quality, an invertible neural network (INN) is set up.

The desired part quality can be achieved by several combinations of machine
settings. Conventional (forward) neural networks determine the possibly achievable
quality based on one particular parameter setting. INNs allow the problem to be
inverted so that combinations of parameter settings are suggested to achieve the
desired quality. The term INN was introduced in 2019 by Ardizzone et al. (2019).
INNs differ in structure from conventional neural networks by the base layer, also
called the “inverse coupling layer” (Dinh et al. 2017). In contrast with other neural
networks, they can be inverted trivially. An advantage of using INNs in the AM
and textile use cases is the possibility of further optimizing the production process
according to certain criteria, such as production time or quality. Since different
machine settings generating the same output are suggested, the most suitable ones
for the specific task can be selected.

To improve the applicability of extrusion-based AM as a method for producing
high-quality plastic parts decentrally, a method for non-planar AM with variable
layer height was developed. Using this method, the technology’s freedom, based on
a layer-by-layer manufacturing approach, is retained, while typical shortcomings
like high anisotropy and high surface roughness are addressed. This is done by
deliberately curving layers in three-dimensional space instead of manufacturing
those layers in a planar way, parallel to the build platform. Three-dimensional layers
inside the part can be shaped such that mechanical loads on the part are taken in
strand direction as opposed to perpendicular to the strands. Outer layers are used
to accurately represent the desired geometry, including potential freeform surfaces.
This way, surface roughness can be reduced by 76% (Pelzer and Hopmann 2021),
while retaining a large layer height for the majority of the part, therefore reducing
manufacturing time.

3.3 Results and Conclusion

The benefits of agile, quickly adaptable manufacturing processes were utilized
during the beginning of the Covid-19 pandemic. To aid in the need for PPE,
face shields were manufactured around the world using AM. Since most people
were printing the forehead part and buying elastic straps for securely wearing the
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face shield, the latter were in short supply. By designing a 3D printable elastic
strap, setting up the associated manufacturing process while going through several
iterations quickly, a highly efficient process could be set up in just 3 days. This way,
it was possible to manufacture more than 800 elastic straps per day per machine. In
combination with injection-molded and film-extruded parts, complete face shields
could be produced in-house (Schmitz 2020). Similarly, designs for textile masks
were elaborated and distributed to manufacturers who changed their production
focus to masks. By setting up a supplier-manufacturer platform, it was possible
to enable the exchange and distribution of close to 2 billion masks and 79 million
protective clothes.

In a separate study, it was shown that using the developed INN for parameter
prediction, it is possible to automatically generate sets of process parameters that are
capable of accurately replicating the demanded part properties. In most cases, the
accuracy of the tested part properties was within 82.76% to 99.98% of the demanded
output (Pelzer et al. 2023). Only few cases resulted in lower accuracies; however,
this could be attributed to extreme combinations of demanded part properties and
was identified beforehand as unlikely to succeed, regardless of chosen parameters.
These edge-cases were used to identify the barriers of achievable quality.

The research on non-planar AM shows that previously present conflicts, like
the trade-off between manufacturing speed and surface roughness, can be resolved,
resulting in a more capable manufacturing technology and higher quality parts.

In conclusion, it was shown that all necessary aspects for a decentralized
production – agility and flexibility, part quality as well as reliability and objectivity
in process setup – could be achieved. By combining all mentioned advances, the
foundation for decentralized manufacturing is laid.

4 Reinforcement Learning in Production Scheduling

A general shift toward growing product individualizations and more flexible pro-
duction environments has led to a significantly increased complexity in production
management (Haeussler et al. 2020; Schuh et al. 2019b). Coping with smaller batch
sizes, flexible material flows and frequent disturbances on the shop floor creates
additional requirements especially on the short-term production management (Lang
et al. 2019). Conventional ERP systems could not yet support these challenges
sufficiently, so new systems continue to be developed, e.g., Advanced Planning
Systems (Zijm and Regattieri 2019).

In addition to traditional optimization methods, recent approaches investigate the
feasibility of applying learning-based methods, e.g., reinforcement learning (RL) to
scheduling tasks in production (Xie et al. 2019). What most approaches have in
common is the focus on the main control tasks order release and dispatching. By
comparing the performance to traditional methods used to solve such problems,
e.g., ConWIP or Shifting Bottleneck, trained RL agents show promising solutions
for scheduling tasks (Kemmerling et al. 2021). Rather than a purely academic
investigation of RL in abstract scheduling tasks, the goal in the work presented here
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is to enable the use of RL approaches in realistic production scenarios by identifying
remaining obstacles and addressing them.

4.1 State of the Art

During the last decades of research on production planning and control many
approaches and frameworks have been published (Wiendahl et al. 2005; Schuh
2012; Lödding 2016). In accordance with Lödding, general production control tasks,
e.g., order release and dispatching, with short-term influence on the production
performance still get special attention in order to cope with the stated challenges
(Kemmerling et al. 2021; Waschneck et al. 2018). As depicted in Fig. 4, the order
release task determines the time and sequence in which orders are released for
production and thus controls the actual input to the production system. Dispatching
or sequencing determines the sequence in which orders are processed at each work
system (Lödding 2016).

With a growing level of complexity, especially for flexible material flows and
a high number of machines and orders, classical approaches like mathematical
optimization were complemented by heuristics to reduce the scope of consideration
(Samsonov et al. 2021). Due to an increasing operational use of assistance systems
based on simulation, it becomes feasible to depict and hence understand a higher
complexity level as present methods could provide (Rabe et al. 2008). In the
production context, discrete-event simulation is broadly used to map the production
process including orders, resources, material flows, production plans, buffers,
sequences, and performances (Fishman 2001). Discrete-event simulations provide
the foundation for the application of learning-based methods such as RL.

The application of RL to scheduling problems in production is an emerging field
of study with a wide range of different approaches being investigated. They differ in
their structure as single-agents (Samsonov et al. 2021; Zhang et al. 2020) or multi-
agent systems (Waschneck et al. 2018), use different kinds of algorithms such as
value-based (Waschneck et al. 2018; Samsonov et al. 2021) and actor-critic methods
(Zhang et al. 2020), and consider different ways of modeling state and action spaces.

Fig. 4 Task of production control (Lödding 2016)
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RL is well suited to be applied to scheduling problems, because a strategy can be
derived by direct interaction with unknown environments and without having to rely
on externalized expert knowledge (Panzer and Bender 2022).

While the problem has been receiving increasing attention in the literature, the
focus of present works tends to be on solving heavily abstracted problems rather
than researching the transfer of RL systems to real production environments.

4.2 Approach and Methods

Solving a problem using RL requires formulating it as a sequential decision
problem, in which an agent interacts with an environment by performing certain
actions after observing the environment’s state. The agent receives a reward
depending on how well it solves the given problem and, during a training period,
learns a strategy that maximizes its long-term rewards. The agent’s observations
in response to actions are typically computed by a simulation (Gosavi 2015). While
commercial, widely accepted simulation tools for order release and other production
scheduling problems exist, they generally do not provide interfaces which allow
them to be used by common RL software. RL libraries and frameworks tend to
be written in programming languages like Python, which offer advantages such
as easy adaptability for research, but do not provide the sufficient standard for
direct implementation in an industrial application. Compatibility with commercial
simulation tools is, however, of paramount importance to enable the use of RL
learning in real production environments. To facilitate this, an interface based on
network sockets was created for the practical application of the use case presented
here (Kemmerling et al. 2021). This makes it possible for the RL agent created
in Python to communicate directly with a simulation in the commercial tool Plant
Simulation.

As the user acceptance of automated scheduling agents must be assured, an
application to compare and visualize different order release scenarios based on
their performance in terms of the adherence to delivery dates and utilization of
available resources has been developed. The integration of real problem cases into
the application and the combination of the different functionalities in an online
application, i.e., simulation, RL algorithm, and visualization for different scenarios,
ensures the precise aim of solving practical problems.

4.3 Results and Conclusion

Research performed during the development of the application presented here has
investigated both order release (Kemmerling et al. 2021) as well as combined order
release and sequencing problems (Samsonov et al. 2021) and demonstrated that
RL agents can learn successful strategies to solve such problems. In addition, RL
agents trained in this way have been shown to solve order release problems within
the software Plant Simulation (Kemmerling et al. 2021), which is an important
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step toward practical use of RL in real-world scenarios. However, this transfer
onto commercial simulation software also highlights the remaining challenges,
which need to be overcome by RL solutions. These include incorporating further
optimization objectives and constraints such as adherence to delivery dates, scaling
the approach toward larger problem instances as they are encountered in real
production scenarios, and transfer learning over different types of production.
Further challenges lie in the investigation of how well RL solutions can perform
disturbance management to appropriately respond to production interruptions and
in examining how online optimization with RL can affect response times.

5 Process Analyzer – Weakness Detection in Event Logs

For companies, business process improvement is becoming more important
(Schmelzer and Sesselmann 2020). One of the key tasks within business process
improvement is the weakness detection during the process analysis phase (Dumas
et al. 2018). Based on workshop formats and interviews, these approaches are
time-consuming, cost-intensive (Schmelzer and Sesselmann 2020), and exposed to
subjective influences (Bergener et al. 2015). For process mapping, process mining
discovery algorithms can increase the objectivity and reduce the effort by analyzing
event logs (van der Aalst et al. 2021). For weakness detection in process analysis,
however, methodological knowledge is needed to analyze an actual process flow
and ensure applicability in practice (Bergener et al. 2015). The Deviation Detection
application focuses on the automatic detection of definitions as well as root cause
analysis using machine learning techniques, while here the focus is on the user-
defined deviation. The main objective is to bring user domain knowledge into the
framework.

5.1 State of the Art

Various approaches from the literature aim to address the explained challenges.
Authors like Bergener et al. (2015), Hoehenberger and Delfmann (2015), and
Rittmeier et al. (2019) use weakness patterns that formalize knowledge about the
structure of process weakness types to apply them to process models with pattern-
matching algorithms. In approaches such as Outmazgin and Soffer (2016) this idea
is applied to event logs, but only for specific workaround weakness types. Hence,
huge automation potential remains for the weaknesses identification in real business
processes with low effort. Several process mining techniques for general weakness
detection do already exist but often rely on reference “to be” process models. The
remaining challenge is to develop weakness models of generic business process
weakness types. Their application on event logs enables weakness detection in as-
is-processes without a reference model and hence can reduce effort and subjectivity.
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5.2 Approach and Methods

The Process Analyzer enables semi-automated detection of weaknesses in business
and production processes based on event logs. To this end, domain expert knowledge
on relevant process weakness types is transformed into weakness models, which are
applied with algorithms to event logs.

A weakness model is the formalized description of a weakness type with regard
to its characteristic properties (Schuh et al. 2021). The graphic description method
IDEF0 (ICAM Definition for Function Modelling) is used as a framework for
the modeling of process weakness types. IDEF0 models consist of five elements:
Activity/Process, Input Information, Control Information, Resources, and Output
Information (Presley and Liles 1995). It can be applied to describe weakness models
using the elements weakness type and data requirements necessary to detect a
weakness, a mathematical description as a rule for detection, algorithmic functions
that enable the application of the weakness model as well as the shape of the
identified weakness (e.g., event, tuple of events, . . . ). Figure 5 shows a generic
model for process weakness types.

5.3 Results

Seven generic weakness types were derived from systematic literature followed by
a multi-criteria relevance assessment by Schuh et al. (2021): A redundant activity
describes the repeated execution of a single activity within a process instance. A
repetition of an activity sequence within a process instance is labeled as a backloop.
Unwanted activities that occur at least once (e.g., printing) represent the weakness
type unintentional activity. Parallelizable activities indicate a reduction in lead
time in comparison to sequential execution. The potential for activity acceleration
is addressed by the weakness type unsuitable execution time. A bottleneck is an

Shape of the identified 
weakness

E. Output Information

Weakness types

A. Activity/Process

Mathematical description

C. Control Information

Algorithm functions

D. Resources

Data requirements

B. Input Information

Fig. 5 Elements of process weakness type model (Schuh et al. 2021)
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activity in a process instance with the longest execution time. Transition times
specify the time between two consecutive events, which is generally considered a
process weakness.

Regarding the data requirements, all the mentioned weakness types require the
basic event log attributes, process instance, activity, and time stamp for identifica-
tion. Additionally, the weakness types unsuitable scope of activities, bottleneck, and
transition time require start and end timestamps for each event.

The mathematical description of weakness follows the consideration that
algorithms must be able to process the information from event logs. To ensure
practical relevance the concept’s database is the event log, which is a set of
events stored in the information system. In this work, the mathematical rule-based
description of an event i is defined as:

i = (m, n, o) or i = (m, n, oi, oe) (1)

with i = event; m(i) = process instance of event i; n(i) = activity name of i;
o(i) = timestamp of i; oi(i) = initial timestamp of i; oe(i) = end timestamp of
activity i

The given attributes m(i), n(i), and o(i) or oi(i)/oe(i) are variables, specific values
of these attributes are indicated with “*”. Following, the mathematical descriptions
are derived for the example of the weakness type redundant activity. The set I(m*,
n*) is defined as all events in the event log with a specific process instance m* and
specific activity name n*:

I
(
m∗, n∗) = {

i ∈ I | m(i) = m∗ ∧ n(i) = n∗} (2)

The set I(m*, n*) equals all redundant activities that occur more than once in a
process instance, leading to a mathematical description for a redundant activity:

| I
(
m∗, n∗) |> 1 → I

(
m∗, n∗) = “redundant activity” (3)

In practice, this means that the weakness type “redundant activities” exits, if a
process instance contains two events with the identical activity name. Based on the
mathematical rule-based descriptions, Schuh et al. (2021) defined nine algorithmic
requirements on how to apply the models to event logs. In the context of this paper
the requirements have been translated into a pseudo-code, which is followingly
illustrated for the weakness type of redundancy:

for each activity in the set of events in the event log:
for a process instance in Process Instances (as a set of process instances in the event

log)
if count of number of activities in process instance > 1:
then return duplicate activity found

Using this structure, the requirements for an executable algorithm can be derived.
For the process analyzer, algorithms were designed and tested using simulated data
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generated from real event logs (Pourbafrani et al. 2021a). The provided platform
allows to generate event logs with known deviations and assesses whether the formal
definitions are able to catch these deviations.

5.4 Conclusion

With increased pressure on process performance, also the effectivity and efficiency
requirements for the methods for business process improvements increase. By
process weakness type modeling and algorithmic implementation, the process
analyzer enables automated weakness detection in event logs, thus offering signif-
icant reductions in effort and subjectivity compared to conventional approaches in
practice. Further research should address the quantification of performance losses
due to process weaknesses as well as the standardized derivation of measures
including the quantification of their impact on process performance. Combined,
those concepts could serve as holistic decision support for process analysis and
design, which is already being pursued by the authors.

6 Deviation Detection in Production Lines Using Process
Mining

In order to meet the high customer requirements in terms of individualized products
and short delivery times, global supply chains with strong interdependencies have
formed in recent decades. In order to absorb possible external and internal disrup-
tions, it is necessary to build robust production systems. The response to disruptions
in production is the task of the production controller. The task of the production
controller is to make high-quality decisions in a short time. Furthermore, the
production systems and the dependencies between the subsystems are complicated,
and because of this, it is difficult for one person to derive suitable countermeasures.
The complex processes of production planning and control require appropriate
decision support so that the decision quality can be improved. In the current
case, however, there is a lack of suitable IT support, so that complex decisions
are primarily made on the basis of experience. Often, the production controller
is insufficiently supported by IT systems and therefore relies on experience. In
the area of production planning and control, it is expected that decision support
systems will improve the decision-making processes and reduce the probability of
making the wrong decisions. The recorded execution data of production systems is
a great source of information that can be used to support production controllers in
deviation management. This information is transformed into the form of event logs
in the context of process mining. The aim of this research is to create a decision
support system to enhance the decision-making quality on the shop floor (Mühge
2018; Fischer et al. 2020). This chapter presents a framework and demonstrator
for the management of detection and reaction of disturbances on the shop floor by
using process mining and machine learning. Compared to the application Process
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Analyzer, this application supports daily operational decisions on the detection and
handling of disturbances automatically, whereas the Process Analyzer application
is based on the user’s input for the definition of deviations. The following chapter
presents how the framework and demonstrator have been approached within the
context of the Internet of Production.

6.1 State of the Art

To understand disturbance and deviation handling, deviations and disturbances
are defined. Unplanned and unforecasted deviations from the planned status are
referred to as disturbances. These result in production shortfalls or performance
reductions without intervention (Schwartz 2004). Deviations are characterized by
comparing planned and actual values. Deviations do not necessarily have negative
consequences for a production system, while disturbances normally have. If a
defined tolerance range is exceeded, deviations are classified as disturbances due
to the negative effects on the production system. If the tolerance range is regularly
violated, this is referred to as systematic disturbance. One of the typical tasks of
production controllers is to manage the performance of production, so reducing the
negative impact of disturbances is particularly important (Meissner 2017).

The state of the current research in this fields aims to support the produc-
tion controller in automatic disturbance handling. Existing approaches in the
field of disturbance management by production controllers can be divided into
simulation-based support, methodical support, process mining techniques, and
machine learning-based support. The machine-learning-based approaches use case-
based reasoning for knowledge representation for a rescheduling approach (Priore
et al. 2015; Khosravani et al. 2019). Other approaches use Support Vector Machines
(SVM) or complex event processing for the prediction of deviations and distur-
bances.

In this research, the focus is on process mining techniques since they are data-
driven and use historical event data to interactively improve processes (Pourbafrani
et al. 2021a). Each product in a production system is a process instance, and the
recorded process instances are able to reveal performance and compliance devia-
tions and potential root causes. Process mining deviation detection approaches are
aligned and supported by machine learning techniques (Pourbafrani et al. 2021b),
which makes providing a novel deviation detection framework for production lines
possible.

6.2 Approach and Methods

To develop a first demonstrator, a framework for decision support systems (DSS)
was developed based on the structure proposed in Sauter. DSS is described as an
IT-based system that enables the user to access context-relevant data, analyze it, and
evaluate different alternatives for a specific decision situation (Sauter 2010). Due to
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the tasks of the DSS, it is structured into three parts, namely, a data module, a model
module, and a user interface (Sauter 2010). In the following, the adapted framework
for deviation detection and its components will be described. The data component
uses feedback data from production and machines and has the task of gathering data
from different enterprise IT-Systems like ERP, MES, or IoT platforms to combine
as much data as possible to enable the comparison between the actual and planned
states of the production system. The data component will provide the data in the
form of an event log, which is needed for the process mining and the later machine-
learning components (Fig. 6).

The framework consists of three main modules. The first module is process
mining, which discovers the current process flow of the products and orders in
progress. Process mining not only enables the representation of the actual and
planned process flow but also enables the identification of deviations in the actual
process and in comparison to its planned flow. The set of labeled deviations in the
context of performance and conformance that the framework is able to identify is
presented in Fig. 6. The identified deviations will then be labeled in the second
module by a machine-learning algorithm, and it will be checked if they are a dis-
turbance. Afterward, the potential causes of the detected disturbances are identified,
which can be used as a recommender system for similar disturbances in the future.
This represents the third module of the framework. The process flow, identified
deviations, and labeled disturbances, as well as the proposed countermeasures from
the recommended system, will be presented to the production controller in the user
interface. There, he can give feedback to the model component on whether the
disturbances were labeled correctly and if the recommended countermeasures were
suitable. With the feedback, the model components are trained continuously and
enable a continuous improvement of the DSS.

Event Log

Discover enriched 
process model 
(Conformance 

deviations)
Performance 

deviation

Single Aspect 
Analysis

Case ID

Activity name

Resource name

Compare duration, waiting time to the 
average of the cases

Compare duration, waiting time to the 
user provided threshold

List or slow activities in the case 

Performance deviation 

Conformance 
Deviation 

Conformance

Model with the labeled performance 
problems on Activities

List of all cases with deviation  

List of all activities had deviation 

Fig. 6 The defined and considered list of deviations w.r.t. performance and activity flow in the
production lines using their event logs
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6.3 Results and Conclusion

The framework was implemented as a Python web application. With the process
mining algorithms, deviations are detected w.r.t. activities, resources, process
instances (cases), and the overall processes. Afterward, using different techniques
such as decision trees, the decision trees are trained using the detected deviations.
The resulting trees are able to present the potential causes and situations that
lead to the specific types of deviation happening. The causes are identified, and
countermeasures are proposed. Furthermore, the application of process mining was
evaluated in the context of a pipe manufacturer. A sample-derived decision tree can
be based on the duration of process instances as a deviation in the application.

The purpose of the proposed framework is to identify and react to disturbances
in production lines w.r.t. their event logs. The framework and its modules were
designed and implemented to make the evaluation using real data possible. This
framework was evaluated using simulated event data and real-world data of
processes in the Cluster of Excellence “Internet of Production” project with the
main purpose of making decisions within certain constraints. The comprehensive
considered types of deviation and extracted attributes are the proper platform for
the use of predictive process monitoring in the case of online detection and reaction
of deviations in production lines. The next step is to make the framework executable
for the streaming data of production lines, which requires deployment on the actual
shop floor settings.

7 Conclusion

In this paper, the work of the IoP’s short-term production management research
group was presented. This includes five individual and partially interlinked appli-
cations that address a variety of issues in short-term production management. They
pursue the common goal of data-driven decision support in the Production Control
Center in order to increase both the decision quality and the decision speed in
production environments on or near the shoop floor. The vision of the self-learning
production system, in which learning and profiting from historical data are intended,
is central to this. Subsequently, the context-specific selection and processing of data
provide the basis for the research contributions achieved in the various applications.

Regarding the Predictive Quality and automated RCA application (2), three
major research contributions are made: defining a comprehensive data model and
an exhaustive ML framework, quantifying uncertainty for predictive models, and
using feature importance as well as other model-agnostic methods to gain process
insights. A similar contribution is made with the application Parameter Prediction
using INN (3). By training an invertible neural network based on historical and
synthetically generated data, process parameters are predicted which can be used to
produce components with the desired quality properties.
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The application of RL in production scheduling investigates the feasibility of
applying reinforcement learning to common scheduling tasks in production and
compares the performance of trained reinforcement learning agents to traditional
methods used to solve such problems (4). While reinforcement learning shows
promise, it has to be pointed out that challenges such as scalability and compatibility
with common simulation software remain.

In both applications Process Analyzer (5) and Deviation Detection (6), the
potentials of process mining in the context of production management are inves-
tigated. While the Deviation Detection application is designed to identify and
mitigate performance and compliance deviations in production systems, the Process
Analyzer concept enables the semi-automated detection of weaknesses in business
and production processes utilizing event logs. By using process mining techniques
on event logs, effort and subjectivity for the weakness detection in as-is-processes
can be reduced without requiring a reference process model.

The applications presented currently differ partially in their implementation
status and are continuously being developed further. This includes in particular the
continued interlinking of the work within the research group as well as in the entire
IoP. In the medium term, all developed prototypes are to be integrated into the IoP
Kubernetes cluster, and in the long term, the real-time capability is to be increased
for use in real production environments.
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